Prevalence of SEA and SEB enterotoxin producing methicillin-resistant staphylococcus aureus strains among primary school children in Sari, Iran

Sahar Khalili¹, Nikou Bahrami², Shaghaygh Rezai³, *Iman Pouladi⁴

Sri Lanka Journal of Child Health, 2021; 50(1): 17-21

Abstract

Background: Staphylococcus aureus is a frequent hospital and community-acquired infection. It has different types of virulence factors and provides host invasion requirements through the release of various toxins, the super-antigenic enterotoxins, *SEA* and *SEB* being the most likely to cause pathogenicity.

Objectives: To assess the prevalence of *SEA* and *SEB* enterotoxin producing *MRSA* strains among primary school children in Sari, northern Iran.

Method: In this descriptive cross-sectional study, 140 nasal isolates of primary school children were collected for 4 months in 2017 in Sari city. First, isolates were identified utilising biochemical and Minimum laboratory methods. inhibitory concentration of isolates to oxacillin was next determined using phenotypic and molecular methods. The presence of SEA and SEB genes were detected chain then using polymerase reaction sequence specific primers (PCR-SSP).

Results: We identified 70 Staphylococcus aureus isolates through standard microbiological procedures. In the phenotypic antibiotic susceptibility assay of 70 isolates of Staphylococcus aureus, 42 isolates were identified as oxacillin-

¹MSc Student in Microbiology, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran, ²MSc Graduate, Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Iran, ³Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, ⁴MSc in Medical Microbiology, Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran

*Correspondence: imanpouladi96a@gmail.com

(D) https://orcid.org/0000-0002-0640-2727

(Received on 12 January 2020: Accepted after revision on 28 February 2020)

The authors declare that there are no conflicts of interest

Personal funding was used for the project

Open Access Article published under the Creative

Commons Attribution CC-BY C U License

susceptibility assay of 70 isolates of *Staphylococcus aureus*, 42 isolates were identified as oxacillinresistant isolates according to the CLSI guidelines, and were reported as methicillin-resistant *staphylococcus aureus* (*MRSA*) nasal carriers. Also, 23 cases of oxacillin-resistant isolates lacked the mecA gene (false positive). Nineteen isolates were definite *MRSA* using PCR, of which 8 isolates (21.42%) had *SEA* gene and 3 isolates (7.14%) had *SEB* gene. Also, three isolates (7.14%) carried both the *SEA* and *SEB* genes.

Conclusions: In primary school children in Sari, northern Iran, of the 19 definite *MRSA* isolates using PCR, 21.4% had the *SEA* gene, 7.1% had the *SEB* gene and 7.1% carried both the *SEA* and *SEB* genes.

DOI: http://dx.doi.org/10.4038/sljch.v50i1.9394

(Keywords: methicillin-resistant *staphylococcus aureus*, *SEA* gene, *SEB* gene)

Introduction

Staphylococcus species are a common cause of nosocomial infection worldwide¹. Among the many species of staphylococcus genus, Staphylococcus aureus (S. aureus) is the most invasive species that can contribute to the development of skin infections. sinusitis infections and food poisoning². The anterior nares are the primary source of S. aureus and 20-40% of healthy individuals carry nasal S. aureus. Nasal carriage is the principal cause of staphylococcal infection³. Antibiotic resistance is now a major global concern because of potential pathogenicity and increased prevalence of methicillin-resistant Staphylococcus aureus (MRSA). MRSA has been shown to pose a serious threat to nosocomial infections, and treatment failure^{4,5}. Resistant to methicillin in MRSA strains is due to a *mecA* gene embedded in a staphylococcal cassette chromosome mec (SCCmec)⁶. This gene encodes an alternative penicillin-binding protein, PBP2a that has a low affinity for binding β -lactam antibiotics^{3,7}. Community-acquired MRSA (CA-MRSA) normally expresses lower levels of antibiotic resistance compared to hospitalacquired MRSA (HA-MRSA)^{8,9}. Over the past few years, the prevalence of nosocomial infections caused by this strain has significantly increased. As such, an average of 40% of S. aureus strains are MRSA¹⁰. Many virulence factors are produced by different strains of S. aureus (SEA and SEB)¹¹.

Most diseases are caused by *SEA strains*, whilst *SEB* is a main cause of pseudomembranous colitis $(PMC)^{12}$. These enterotoxin-producing strains of *S. aureus* are more resistant to host immunity and antibiotics compared to other strains^{11,13}.

Objectives

To assess the prevalence of *SEA* and *SEB* enterotoxin producing *MRSA* strains in primary school children in Sari, northern Iran.

Method

A cross-sectional study was carried out on 140 primary school children aged 6-12 years for four months in 2017 in Sari city. Sampling was performed using stratified random sampling method. Clinical specimen collection and bacterial identification: A sterile wet swab was inserted into the nostril, and specimens were collected after rotating swabs several times against the nasal wall. The swabs of samples were placed into the Stuart's transport media, and were immediately transferred to the microbiology laboratory of Mazandaran University of Medical Sciences. Bacterial identification was performed using colony morphology, gram stain, catalase testing, coagulase assay and mannitol salt agar, and were confirmed by molecular methods.

Antibiotic susceptibility assay, isolation of MRSA strains: MRSA-resistant isolates of *S. aureus* were phenotypically detected by Kirby-Bauer disk diffusion method, according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. A suspension of the organism equivalent to a 0.5 McFarland standard was prepared and inoculated at final concentration of 10^5 CFU/ml in Müller-Hinton agar. Agar plates with oxacillin were used to detect *MRSA* strains. *S. aureus* strains were cultured on Müller Hinton agar containing 4% sodium chloride and 6 mg/l oxacillin, and were then incubated for 24 hours.

DNA extraction: Boiling was used to extract the DNA of the *S. aureus.* Bacterial colonies were placed in sterile microtubes, containing 1 ml of distilled water. They were then boiled at 100° C for 5 minutes, and the microtubes were then frozen for 5 minutes and boiled again for 5 minutes. Afterwards, the microtubes were centrifuged at 3000 rpm for 10 minutes. The supernatant was then stored as purified DNA at -20 °C.

Application of molecular PCR for detection of mecA, SEA, and SEB genes: After genomes extraction of the samples and primer BLAST on the selected DNA primers, the mecA, SEB and SEB genes were detected by polymerase chain reaction using sequence-specific primers (PCR-SSP) (Table 1) at final concentration of 25 µL, including an initial denaturation at 95 °C for 1 min, 37 cycles comprised of denaturation at 94° C for 30 seconds, primer binding to the target DNA at 59 °C for 30 seconds, elongation at 72 °C for 1 minute, as well as a final elongation at 72° C for 7 minutes, according to the protocol for detection of mecA genes. In addition, for detection of SEA and SEB genes, PCR-SSP was performed at final concentration of 25 µL, including an initial denaturation at 94 °C for 5 min, 35 cycles comprised of denaturation at 94 °C for 45 seconds, primer binding to target DNA at 56 °C for SEA gene and 60 °C for gene SEB for 45 sec, incubation at 72° C for 45 seconds, and the final elongation at 72 °C for 10 min, according to the protocol. The PCR products were finally electrophoresed.

Ethical issues: This study was approved by the Ethics Committee of Qaemshahr branch, Azad University of Qaemshahr (378. ID Code: 10730548952006). Written informed consent was obtained from the parents of the participants.

Gene	Sequence	Product size	Reference
mecA	FP: 5'- TCCAGATTACAACTTCACAGG	162bp	14
	RP: 5'- CCACTTCATATCTTGTAACG		
SEA	FP: 5'- AAA GTC CCG ATC AAT TTA TGG	210bp	15
	RP: 5'-GTA ATT AAC CGA AGG TTC TGT		
SEB	FP: 5'-TCG CAT CAA ACT GAC AAA CG	478bp	15
	RP: 5'-GCA GGT ACT CTA TAA GTG CC		

 Table 1: The nucleotide sequences and DNA primers

Results

This study was conducted on 140 primary school children aged 6-12 years in Sari city. There were 70 isolates of *S. aureus* identified. Then, DNA extraction was performed, and PCR products of *mecA*, *Sea*, and *Seb* genes were obtained using PCR-SSP. In the phenotypic antibiotic susceptibility assay of 70 isolates of *S. aureus*, 42 isolates were identified as oxacillin-resistant isolates and were

reported as *MRSA* nasal carriers. Also, 23 cases of oxacillin-resistant isolates were shown to have no *mecA* gene (false positive). Nineteen isolates were definite *MRSA* using PCR, of which eight isolates (21.42%) had *SEA* gene (figure 1) and three isolates (7.14%) had *SEB* gene (figure 2). Also, three isolates (7.14%) carried both the *SEA* and *SEB* genes (table 2).

Figure 1: The schematic of agarose gel electrophoresis bands of SEA gene for S. aureus species: raw 1: 100bp DNA ladder mark; raw 2: amplified PCR products of SEA gene for standard S. aureus strains; raw 3 to 8: amplified DNA products of clinical SEA -positive isolates of S. aureus; raw 9: amplified PCR products of negative control

Figure 2: The schematic of agarose gel electrophoresis bands of SEB gene for S. aureus species: raw 1: 100bp DNA ladder mark; raw 2: amplified PCR products of SEB gene for standard S. aureus strains; raw 3 to 5: amplified DNA products of clinical SEB -positive isolates of S. aureus; raw 6: amplified PCR products of negative control

Type of enterotoxin	Percentage of enterotoxin genes among isolates
SEA	21.4
SEB	7.1
SEA and SEB	7.1

Table 2: Patterns of enterotoxins of MRSA isolates obtained from the participants

Discussion

MRSA strains are more resistant to other antibiotics as well as to methicillin and beta-lactam antibiotics⁷. S. aureus acquired from the CA-MRSA clones, mostly affect children and young adults who are in close contact with community members. These isolates can cause many infections, such as necrotizing pneumonia and skin infections. A major factor associated with community-acquired infections is presence in crowded areas³. This study was conducted to assess the enterotoxin-producing CA-MRSA in primary school children in Sari city. Results showed that 42 isolates were identified as oxacillin-resistant and 23 were reported as nasal MRSA carriers, according to CLSI guidelines. Also, 23 cases of oxacillin-resistant isolates were shown to have no mecA. Nineteen isolates were identified as definite MRSA by PCR. Gardella et al. (2010) conducted a study on 316 healthy children in Argentina, and found that 31% were nasal carriers of S. aureus and 4.4% were nasal MRSA carriers, which is in accordance with results of our study¹⁶. Stanley

et al. (2014) investigated 400 isolates of *S. aureus*, and reported that 31.3% and 38% were identified as *MRSA* nasal carrier using phenotypic technique and PCR, respectively¹⁷. Asgary *et al.* (2017) examined 102 clinical isolates of *S. aureus*, and indicated that 58.8% of the isolates were methicillin-resistant by PCR, which is consistent with our study⁷.

S. aureus functions both as potent toxins as well as super-antigens Staphylococcal (SAgs). enterotoxins are a superfamily of proteins produced by S. aureus, and appear in different serological types, including staphylococcal enterotoxins and toxic shock syndrome toxin^{18,19}. The potential role of S. aureus SAgs has been shown in allergic respiratory diseases. Deregulation of the immune response, proliferation of autoreactive T cells and development or exacerbation of many chronic autoimmune diseases may result from the effects of these SAgs²⁰. Sensitivity to specific S. aureusderived SEA/SEB SAgs has been linked with development and increased odds of exacerbation of

the disease. Enterotoxins *A* and *B* are the commonest produced by *S. aureus*. Therefore, it is important to assess the frequency and timely control of enterotoxin-producing *S. aureus* strains, especially *SEA* and *SEB* genes which are virulence factors associated with diseases caused by *S. aureus*^{19,20}.

In the present study, of 19 MRSA clinical isolates, 8 (21.4%) had SEA gene, 3 (7.1%) had SEB gene, and 3 (7.1%) carried both SEA and SEB genes. Abolghasemi et al (2017) examined 65 isolates of S. aureus from skin samples, and reported the SEA gene frequency as 86.2% and SEB gene frequency as 15.4% using phenotypic technique and PCR, which is consistent with our study, as we showed higher rate of SEA compared with SEB18. Valizadeh et al (2016) evaluated production of enterotoxins in 60 S. aureus specimens collected from human cases with purulent infection, poisoning symptoms and their skin. When multiplex PCR was performed on the samples, 50% of the isolated S. aureus were positive for one or more enterotoxin genes, with SEA gene as the most frequent isolated gene (30%), which was consistent with the results of our study²¹. Sadeghi et al. (2019), collected and examined 350 nasal swab samples from nasal carriers (210 patients) and multiple sclerosis patients (140 patients). They identified S. aureus SAgs by multiplex PCR, and reported Seb (7.7%), SEA (5.31%), and Eta (16.6%) as the most common SAgs, which were higher compared to our findings²⁰.

Conclusions

In primary school children in Sari, northern Iran, of the 19 definite *MRSA* isolates using PCR, 21.4% had the *SEA* gene, 7.1% had the *SEB* gene and 7.1% carried both the *SEA* and *SEB* genes.

References

- Abbasi S, Taei S, Zamanzad B. The prevalence of methicillin-resistant *Staph. aureus* strains producing enterotoxin A and B. *Tehran University Medical Journal* 2016; **73**(11): 778-83.
- van Belkum A. Staphylococcal colonization and infection: homeostasis versus disbalance of human (innate) immunity and bacterial virulence. *Current Opinion in Infectious Diseases* 2006; 19(4):339-44. https://doi.org/10.1097/01.qco.000023515 9.40184.61 PMid: 16804380
- 3. Mansouri S, Sobhani Poor M, Saeidadeli N. Prevalence of methicillin-resistant *Staphylococcus aureus* (MRSA) and antibiotic resistance patterns of the isolates

from the nose of training soldiers in kerman in 2012. *Iranian Journal of Medical Microbiology* 2014; **8**(3):15-21.

- Strommenger B, Bartels MD, Kurt K, Layer F, Rohde SM, Boye K, et al. Evolution of methicillin-resistant Staphylococcus aureus towards increasing resistance. Journal of Antimicrobial Chemotherapy 2014; 69(3):616-22. https://doi.org/10.1093/jac/dkt413 PMid: 24150844
- Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, *et al.* The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. *Clinical Infectious Diseases* 2008; 46(2):155-64. https://doi.org/10.1086/524891 PMid: 18171244
- Aglua I, Jaworski J, Drekore J, Urakoko B, Poka H, Michael A, et al. Methicillin resistant Staphylococcus aureus in Melanesian Children with haematogenous osteomyelitis from the Central Highlands of Papua New Guinea. International Journal of Pediatrics 2018; 6(10): 8361-70.
- Askari P, Ghazvini K, Namaei MH, Aryan E, Safdari H, Yousefi M. Prevalence of methicillin-resistant *Staphylococcus aureus* and their antibiotic resistance patterns in patients hospitalized in Birjandbased Imam Reza Hospital. *Journal of Birjand University of Medical Sciences* 2017; 24(3): 218-26.
- Kananizadeh P, Ohadian Moghadam S, Sadeghi Y, Rahimi Foroushani A, Adibi H, Pourmand M. Molecular characteristics of methicillin-resistant *Staphylococcus aureus* (MRSA) isolated from diabetic foot infection. *Iranian Journal of Pathology* 2019; **14**(4): 329-37. https://doi.org/10.30699/IJP.2019.101092. 2035 PMid: 31754364 PMCid: PMC6824774
- 9. Tajik S, Najar-Peerayeh S, Bakhshi B, Golmohammadi R. Molecular characterization of community-associated methicillin-resistant *Staphylococcus*

aureus in Iranian burn patients. *Iranian Journal of Pathology* 2019; **14**(4):284-9. https://doi.org/10.30699/IJP.2019.94189.1 917

PMid: 31754357 PMCid: PMC6824769

- Chua K, Laurent F, Coombs G, Grayson ML, Howden BP. Not communityassociated methicillin resistant staphylococcus aureus (CA-MRSA), a clinician's guide to community MRSA-its evolving antimicrobial resistance and implications for therapy. *Clinical Infectious Diseases* 2011; **52**(1):99-114. https://doi.org/10.1093/cid/ciq067 PMid: 21148528
- Herwaldt LA, Control of methicillinresistant *Staphylococcus aureus* in the hospital setting, *American Journal of Medicine* 1999; **106**: 11S-18S. https://doi.org/10.1016/S00029343(98)003 50-7
- Dadgar T, Ghaemi EA, Bahador N, Imani Fooladi AA, Kamareie F. Detection of *Staphylococcus aureus* enterotoxin genes A-E. *MLJ* 2014; 7(Suppl.5):1-8.
- Salari Sharif A, Sattari M, Moradi M, Shahrokhabad R. Detection of *Staphylococcus aureus* Enterotoxin genes A & B in clinical samples of the patients referring to the medical centers of Kerman and Rafsanjan Cities by PCR Technique. *Journal of Rafsanjan University of Medical Sciences* 2012; 11(2): 128-36.
- Rezai SH, Peyravii Ghadikolaii F, Ahanjan M, Valadan R, Ahangarkani F, Rezai MS, et al. Prevalence of nasal carriage methicillin-resistant Staphylococcus aureus with mecA Gene among healthy primary school boys in North of Iran; A cross-sectional study. International Journal of Pediatrics 2017; 5(12): 6515-25.
- 15. Khalili Dizabadi S, Goli HR, Ahanjan M, Firouzi F, Nasrollahi M. Prevalence of enterotoxin A and enterotoxin B genes in Staphylococcus aureus strains isolated from hospitalized patients, medical personnel, and kitchen staff in two educational hospitals, Sari, Iran. Journal of Mazandaran University of Medical Sciences 2018; 28(165): 159-64.

- 16. Gardella N, Murzicato S, Di Gregorio S, Cuirolo A, Desse J, Crudo F, et al. Prevalence and characterization of methicillin-resistant Staphylococcus aureus among healthy children in a city of Infection, Argentina. Genetics and Evolution 2011; 11(5):1066-71. https://doi.org/10.1016/j.meegid.2011.03.0 19 PMid: 21463711
- 17. Stanley IJ, Bwanga F, Itabangi H, Nakaye M, Bashir M, Bazira J. Prevalence and antibiotic susceptibility patterns of clinical isolates of methicillin-resistant *Staphylococcus aureus* in a tertiary care hospital in Western Uganda. *British Microbiology Research Journal* 2014; 4(10): 1168-77. https://doi.org/10.9734/BMRJ/2014/9909
- Abolghasemi K, Harzandi N, Dezfulian M. Molecular survey of the frequency of *sea* and *seb* genes in *Staphylococcus aureus* isolated from skin infections in Razi hospital of Tehran. *Medical Sciences* 2017; 27(2):138-43.
- 19. Pakbaz Z, Sahraian MA, Sabzi S, Mahmoodi M, Pourmand MR. Prevalence of *sea*, *seb*, *sec*, *sed*, and tsst-1 genes of *Staphylococcus aureus* in nasal carriage and their association with multiple sclerosis. *Germs* 2017; 7(4):171-7. https://doi.org/10.9734/BMRJ/2014/9909
- Sadeghi J, Alizadeh N, Ahangar Oskouei M, Laghusi D, Savadi Oskouei D, Nikanfar M, et al. Frequency of superantigen encoding genes of *Staphylococcus aureus* isolates collected from multiple sclerosis (MS) patients and nasal carriers. *Microbial Pathogenesis* 2019; **127**:316-9. https://doi.org/10.1016/j.micpath.2018.12. 010 PMid: 30553909
- Valizadeh E, Amini K. Identification of Staphylococcus aureus enterotoxin genes using multiplex PCR. Journal of Babol University of Medical Sciences 2016; 18(12):26-32.