Review Article

Evaluation of the effectiveness of herbal and non-herbal oral formulations for the prevention of oral diseases in children: A systematic review and meta-analysis

Bhuvanesh N Bhusari¹, *Shivayogi M Hugar², Neha Kohli³, Niraj Gokhale¹, Sanika Karmarkar¹, Shweta Hugar⁴

DOI: https://doi.org/10.4038/sljch.v53i2.10834

(Key words: Children, Commercial, Dentifrice, Herbal, Mouth rinse, Oral formulation)

Introduction

“An ounce of prevention is worth a pound of cure”; this statement by Benjamin Franklin eloquently signifies maintaining good oral hygiene as a part of our daily routine. Good oral health is essential for overall physical and psychological well-being. While mechanical tooth brushing and dental flossing are necessary, they may not be sufficient for many children due to factors such as lack of dexterity, motivation, and parental supervision, which can limit their effectiveness. The use of chemotherapeutic agents in mouth rinses can aid in mechanical plaque removal and promote an oral environment free of dental caries and periodontal disease in children. Parents and caregivers should consult with their child's dentist to identify appropriate auxiliary oral care products tailored to the child’s individual needs.

Among various antimicrobial delivery systems, mouth rinses are considered one of the safest and most effective options, especially for children above 7 years, as they can deliver therapeutic ingredients to all accessible surfaces in the mouth, including interproximal surfaces. Chlorhexidine mouth rinse is a widely used chemotherapeutic agent that is considered the gold standard due to its ability to reduce plaque accumulation and gingival inflammation. However, it has drawbacks, including altered taste sensation, brown staining of teeth, tongue sensitivity and unpleasant taste, which limit its long-term use. Mouth rinses should not be used alone for oral care but should be used in conjunction with mechanical means such as dentifrice, toothbrush, or flossing to control dental caries and plaque. Dentifrice plays a crucial role in reducing the microbial count when used with a toothbrush. Fluoride-containing dentifrice has been proven effective in reducing the microbial count.

Objectives

1. To evaluate and compare the efficacy of herbal and non-herbal oral formulations in reduction of microbial count.
2. To evaluate and compare the efficacy of herbal and non-herbal oral formulations in reduction of gingival inflammation.
3. To evaluate and compare the efficacy of herbal and non-herbal oral formulations in reduction of plaque accumulation.

Focused question

Are the herbal oral formulations (mouth rinse and dentifrice) effective in reduction of microbial count over the non-herbal commercially available oral formulations in children?

PICOST format

P (Population) - Children under 15 years of age

I (Intervention) – Herbal oral formulations (mouth rinse and dentifrice)

C (Comparison)– Non-herbal commercially available oral formulations (mouthrinse and dentifrice)

O (Outcome) –

1. Reduction of microbial count in children.
2. Reduction of gingival inflammation.
3. Reduction of plaque accumulation.

S (Study design) – Randomized control trials, Quasi-controlled trials and Control clinical trial.

T (Time frame) – Data collection from past 20 years.

Funding

Personal funding was used for the project.

Conflict of interest

The authors declare that there are no conflicts of interest.

Open Access

Open Access Article published under the Creative Commons Attribution CC-BY License.

¹Post Graduate Student, ²Professor and Head, ³Professor, Department of Paediatric and Preventive Dentistry, ⁴Lecturer, Department of Periodontology, KAHER’S KLE VK Institute of Dental Sciences, Belagavi, India

*Correspondence: dr.hugarms@gmail.com

https://orcid.org/0000-0003-3657-6709

(Received on 20 November 2023: Accepted after revision on 13 December 2023)

The authors declare that there are no conflicts of interest.
Method
Protocol and registration: The review has been registered in PROSPERO international prospective register of systematic reviews funded by National Institute of Health Research and produced by Centre for Reviews and Dissemination, an academic department of the University of York (registration number CRD42022318648 and can be accessed at: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022318648).12

Inclusion criteria:
1. Study setting should be in vivo.
2. Study design should be randomized control trials, quasi-randomized, and control clinical trial.
3. Study population should be children under 15 years of age.
4. Study evaluating the microbial count.
6. Studies written in English and studies written in any other language but are possible to get translated into English.

Exclusion criteria:
1. Articles reported as an in vitro study or a review article.
2. Studies including children with medical conditions and children with special health care needs.

Search strategy: Literature search strategy was developed using keywords related to mouthwash, dentifrice, herbal, chlorhexidine, fluoride, commercially available, oral hygiene aid, microbial count, plaque, gingivitis and children. Data were searched through the databases PubMed, Google scholar, Web of science, and Cochrane from 1st January 2000 to 1st January 2023. Cross references were checked; grey literature and hand searching of articles was done when full texts of the relevant studies were unavailable through electronic database.

Study selection: Two review authors (BB and SMH) independently screened the titles and abstracts and included them if they met inclusion criteria. Later, full texts of all included studies were obtained and entirely read. Whenever there was uncertainty regarding any study, the problem was resolved by discussing it with another review author (NK). For inclusion of articles for meta-analysis the quality assessment of each article was done by both reviewers independently and later it was cross checked by other reviewers. Finally, the search yielded 42 studies to be included in the systematic review. All the excluded studies were recorded with reason for exclusion for each study (Figure 1).

Data extraction: This was performed using a standardized outline. Study characteristics like author and year of publication, study design, age group, control group, test group, any other groups evaluated, follow-up interval, method of outcome assessment, author conclusion were all tabulated for the selected studies (Table 1).
Table 1: Qualitative analysis of the studies selected for the systematic review

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Author and year</th>
<th>Study design</th>
<th>Age group (yrs)</th>
<th>Control group</th>
<th>Test group</th>
<th>Other groups assessed (n)</th>
<th>Follow-up interval (weeks)</th>
<th>Method of assessment</th>
<th>Primary (intercourse)</th>
<th>Secondary (efficacy)</th>
<th>Author conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Biju et al. (2013)</td>
<td>RCT</td>
<td>8-12</td>
<td>CHX (440)</td>
<td>Herbal (Triphala extract) (440)</td>
<td>DW (440)</td>
<td>B, 2, 4, 12</td>
<td>Culture</td>
<td>PI (Silness & Loe) and GI (Loe and Silness)</td>
<td>No significant difference between herbal and CHX groups</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Bhaba et al. (2011)</td>
<td>RCT</td>
<td>6-10</td>
<td>CHX (25)</td>
<td>Herbal (Salvia officinalis extract) (25)</td>
<td>-</td>
<td>B, 1, 4, 8</td>
<td>Culture</td>
<td>PI (Silness & Loe) and GI (Loe and Silness)</td>
<td>No significant difference between herbal and CHX groups</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mujta et al. (2013)</td>
<td>RCT</td>
<td>8-14</td>
<td>CHX (20)</td>
<td>Herbal (Fenugreek) (15)</td>
<td>-</td>
<td>NB</td>
<td>Culture</td>
<td>PI (Silness & Loe) and GI (Loe and Silness)</td>
<td>Freshel was better than CHX in reducing microbial count and supra-effective to CHX in altering plaque and gingival scores.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Lehe et al. (2014)</td>
<td>RCT</td>
<td>6-12</td>
<td>CHX mouth rinse</td>
<td>Herbal (LSO mouth rinse)</td>
<td>CHX gel, Herbal (LSO toothpaste), Herbal (LSO gel)</td>
<td>B, 4, 8, 25, 52</td>
<td>Culture</td>
<td>-</td>
<td>LSO toothpaste demonstrated most long-lasting microbial reduction, whereas other LSO formulations did not effectively reduce microbial levels.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Misra et al. (2014)</td>
<td>RCT</td>
<td>6-14</td>
<td>CHX (20)</td>
<td>Herbal (10)</td>
<td>Xylitol (10)</td>
<td>B, 4</td>
<td>Culture</td>
<td>PI</td>
<td>Herbal rinse proved equally effective as CHX in reducing S. viridans counts and plaque accumulation.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Jaidka et al. (2011)</td>
<td>Non-RCT</td>
<td>7-14</td>
<td>CHX (10)</td>
<td>Herbal (10)</td>
<td>Xylitol (10)</td>
<td>B, 4</td>
<td>Culture</td>
<td>PI (Silness & Loe) and GI (Loe and Silness)</td>
<td>Maximum antiplaque, anti-gingivitis and antibacterial activity was displayed by herbal mouthwash followed by xylitol mouthwash and minimum was shown by CHX mouth rinse.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Indah et al. (2015)</td>
<td>RCT</td>
<td>6-12</td>
<td>NaF (13)</td>
<td>Oral rinsing (salvia officinalis extract) (13)</td>
<td>Oil pulling (13)</td>
<td>B, 2</td>
<td>Culture</td>
<td>-</td>
<td>Efficacy of fluoride and herbal mouth rinses was found to be comparable in reducing bacterial colonization of an individual.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Bhut et al. (2011)</td>
<td>RCT</td>
<td>8-14</td>
<td>CHX (10)</td>
<td>Herbal (Mango leaf extract) (10)</td>
<td>-</td>
<td>Culture</td>
<td>PI (Silness & Loe) and GI (Loe and Silness)</td>
<td>Higher reduction in microbial count and better plaque control and gingival health seen in CHX group.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Somang et al. (2017)</td>
<td>RCT</td>
<td>12-15</td>
<td>NaF (80)</td>
<td>Herbal (Fenugreek) (80)</td>
<td>Placebo (80)</td>
<td>B, 26, 39</td>
<td>Culture</td>
<td>-</td>
<td>Both herbal and fluoride mouth rinses were equally effective.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Sharma et al. (2011)</td>
<td>Non-RCT</td>
<td>6-12</td>
<td>CHX (15)</td>
<td>Herbal (15)</td>
<td>NaF (15)</td>
<td>B, 2</td>
<td>Culture</td>
<td>-</td>
<td>Hexadent and freshel both showed equal efficacy in reducing S. mutans levels but H ion was inferior to both hexadent and freshel.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Shah et al. (2010)</td>
<td>RCT</td>
<td>7.8</td>
<td>CHX (15)</td>
<td>Herbal (Oxidant extract) (15)</td>
<td>DW (15)</td>
<td>B, 2</td>
<td>Culture</td>
<td>-</td>
<td>Herbal mouthwash proved to be better compared to 0.2% chlorhexidine mouthwash.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Kamath et al. (2011)</td>
<td>RCT</td>
<td>7-10</td>
<td>CHX (45)</td>
<td>Herbal (Cinnamomum cassia) (45)</td>
<td>DW (45)</td>
<td>B, 2</td>
<td>Culture</td>
<td>PI (Silness & Loe) and GI (Loe and Silness)</td>
<td>CHX mouth rinse in comparison with Camellia sinensis extract or DW was found to be more effective.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Padave et al. (2010)</td>
<td>RCT</td>
<td>9-12</td>
<td>CHX (15)</td>
<td>Herbal (Triphala extract) (15)</td>
<td>DW (15)</td>
<td>B, 2, 4</td>
<td>Culture</td>
<td>PI (Turkesky PI)</td>
<td>CHX was the most effective followed by Triphala and Garlic extracts in antimicrobial effect.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Omraman et al. (2018)</td>
<td>RCT</td>
<td>10-13</td>
<td>CHX (20)</td>
<td>Herbal (Ligusticum) (20)</td>
<td>NS (20)</td>
<td>B, 5, 9</td>
<td>Culture</td>
<td>-</td>
<td>No significant differences between CHX and placebo.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Hassan et al. (2018)</td>
<td>RCT</td>
<td>7-12</td>
<td>NaF (11)</td>
<td>Herbal (Grape seed extract) (11)</td>
<td>NH (11)</td>
<td>Culture</td>
<td>-</td>
<td>Green tea extract more effective than gaua extract on streptococcus mutans in comparison to fluoride.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Megalaa et al. (2010)</td>
<td>RCT</td>
<td>6-12</td>
<td>NaF (20)</td>
<td>Herbal (Tulsi extract) (20)</td>
<td>Herbal (Black myrobalans) (20)</td>
<td>B, 1</td>
<td>Culture</td>
<td>PI (Silness & Loe) and GI (Loe and Silness)</td>
<td>difference in variables between groups using aloe vera, Tea tree oil and CHX was not statistically significant.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Kamath et al. (2010)</td>
<td>RCT</td>
<td>8-14</td>
<td>CHX (18)</td>
<td>Herbal (Aloe vera) (18)</td>
<td>Herbal (Tree tea) (18)</td>
<td>B, 2, 4</td>
<td>Culture</td>
<td>PI (Silness & Loe) and GI (Loe and Silness)</td>
<td>Difference in variables between groups using aloe vera, Tea tree oil and CHX was not statistically significant.</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Men et al. (2010)</td>
<td>RCT</td>
<td>10-12</td>
<td>CHX (25)</td>
<td>Herbal water (25)</td>
<td>Distilled water (25), DW</td>
<td>B, 2</td>
<td>Culture</td>
<td>-</td>
<td>CHX was more effective in reducing S. mutans count followed by herbal water and distilled water.</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Lakh et al. (2019)</td>
<td>RCT</td>
<td>5-6</td>
<td>CHX (14)</td>
<td>Herbal (Triphala extract) (14)</td>
<td>Placebo (14)</td>
<td>B, 2</td>
<td>Culture</td>
<td>-</td>
<td>No statistically significant difference between the two groups.</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Sasmal et al. (2010)</td>
<td>RCT</td>
<td>8-12</td>
<td>CHX (20)</td>
<td>Herbal (Sea gong extract) (20)</td>
<td>-</td>
<td>B, 2</td>
<td>Culture</td>
<td>-</td>
<td>Reduction in CHX group was greater compared to S. anamalensis.</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Veldha et al. (2009)</td>
<td>RCT</td>
<td>5-12</td>
<td>CHX (15)</td>
<td>Herbal (Cinnamomum zeylanica) (15)</td>
<td>DW (7)</td>
<td>Culture</td>
<td>-</td>
<td>Microbial reduction by EGCG solution was higher than green tea and DW but less than CHX.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Harale et al. (2013)</td>
<td>RCT</td>
<td>8-12</td>
<td>NaF (15)</td>
<td>Herbal (Coriander) (15)</td>
<td>DW (15)</td>
<td>B,1,2</td>
<td>Culture</td>
<td>-</td>
<td>Coriander seed oil mouthwash showed equivalent and significant reduction compared to NaF mouthwash.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Kamath et al. (2013)</td>
<td>RCT</td>
<td>8-12</td>
<td>CHX (24)</td>
<td>Herbal (Green tea extract) (24)</td>
<td>-</td>
<td>B, 2</td>
<td>Culture</td>
<td>-</td>
<td>No statistically significant difference in reduction of S. mutans count between CHX and green tea mouth rinse group.</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Okada et al. (2012)</td>
<td>RCT</td>
<td>6-12</td>
<td>CHX (20)</td>
<td>Herbal (Camellia) (20)</td>
<td>-</td>
<td>B, 2</td>
<td>Culture</td>
<td>-</td>
<td>No statistically significant difference in reduction of S. mutans count between 0.2% CHX and 0.1% Camellia officinalis mouth rinse group.</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Barry et al. (2011)</td>
<td>Non-RCT</td>
<td>6-12</td>
<td>CHX (20)</td>
<td>Herbal (Cinnamomum) (20)</td>
<td>-</td>
<td>B, 2</td>
<td>Culture</td>
<td>-</td>
<td>No statistically significant difference in reduction of S. mutans count between 0.2% CHX and 0.1% Cinnamon mouth rinse group.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Mukherjee et al. (2021)</td>
<td>RCT</td>
<td>6-12</td>
<td>NaF (30)</td>
<td>Herbal (Triphala, green tea, neem) (30)</td>
<td>Combination (Tulsi 4% with NaF) (30)</td>
<td>B, 1</td>
<td>Culture</td>
<td>-</td>
<td>No statistically significant reduction in S. mutans count among groups after 1 week interval.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Sathu et al. (2021)</td>
<td>RCT</td>
<td>12-15</td>
<td>CHX (30)</td>
<td>Herbal (munnaka leaf) (30)</td>
<td>-</td>
<td>B, 1,2</td>
<td>Culture</td>
<td>PI (Silness & Loe) and GI (Loe and Silness)</td>
<td>Triphala and CHX had similar inhibitory effect on plaque accumulation, gingivitis, and growth of S. mutans.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Bhut et al. (2011)</td>
<td>RCT</td>
<td>14-15</td>
<td>CHX (36)</td>
<td>Herbal (Triphala) (36)</td>
<td>-</td>
<td>B, 4, 12</td>
<td>Culture</td>
<td>PI (Silness & Loe) and GI (Loe and Silness)</td>
<td>Triphala and CHX had similar inhibitory effect on plaque accumulation, gingivitis, and growth of S. mutans.</td>
<td></td>
</tr>
</tbody>
</table>
Evaluation of the effectiveness of herbal and non-herbal oral ... Sri Lanka Journal of Child Health, 2024; 53(2): 156-165

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Duration</th>
<th>Intervention 1</th>
<th>Intervention 2</th>
<th>Baseline</th>
<th>Outcome</th>
<th>Risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mohamad et al. (2021)</td>
<td>Non-RCT</td>
<td>6-12</td>
<td>CHX (20)</td>
<td>Herbal (10% Pomegranate peel) (20)</td>
<td>B, 2 hrs</td>
<td>Culture</td>
<td>Lowest S. mutans count with CHX followed by 15% and 10% pomegranate peel extract groups while lowest performance observed in guava leave extract 15% and 10% groups.</td>
</tr>
<tr>
<td>Saadik et al. (2021)</td>
<td>RCT</td>
<td>4-6</td>
<td>CHX (30)</td>
<td>Herbal (Thyme) (30)</td>
<td>B, 1</td>
<td>Culture</td>
<td>Lowest rate of deviation in the S. mutans level after one week was related to thymol, eugenol, and CHX.</td>
</tr>
<tr>
<td>Saadik et al. (2021)</td>
<td>RCT</td>
<td>4-6</td>
<td>CHX (30)</td>
<td>Herbal (Teucrium polium) (30)</td>
<td>B, 1</td>
<td>Culture</td>
<td>Teucrium polium and guava leaves significantly more effective compared to CHX. Among the two herbs, Teucrium polium was more effective.</td>
</tr>
<tr>
<td>Farag et al. (2022)</td>
<td>Non-RCT</td>
<td>7-12</td>
<td>CHX (20)</td>
<td>Herbal (Grape seed) (20)</td>
<td>B, 1</td>
<td>Culture</td>
<td>No statistically significant difference between the two groups at different time intervals.</td>
</tr>
<tr>
<td>Harale et al. (2022)</td>
<td>RCT</td>
<td>8-12</td>
<td>NaF (15)</td>
<td>DW (15)</td>
<td>B, 1, 2</td>
<td>Culture</td>
<td>Rice bran mouthwash showed equivalent significant and effective reduction in S. mutans count similar to NaF mouthrinse.</td>
</tr>
<tr>
<td>Kamble et al. (2022)</td>
<td>RCT</td>
<td>6-14</td>
<td>CHX (25)</td>
<td>Oral prophylaxis</td>
<td>B, 2, 3</td>
<td>Culture</td>
<td>Oral prophylaxis showed similar efficacy as CHX in reduction of S. mutans. Herbal mouth rinse not as effective as oral probiotics or CHX in reducing S. mutans count.</td>
</tr>
<tr>
<td>Shah et al. (2022)</td>
<td>RCT</td>
<td>7-11</td>
<td>CHX (30)</td>
<td></td>
<td>B, 1</td>
<td>Culture</td>
<td>Reduction of S. mutans count in herbal mouth rinse as compared to CHX mouth rinse was statistically significant.</td>
</tr>
<tr>
<td>Shankargar et al. (2022)</td>
<td>RCT</td>
<td>6-9</td>
<td>NaF (30)</td>
<td>Herbal (Virgin coconut oil) (30)</td>
<td>B, 4</td>
<td>Culture</td>
<td>NaF group exhibited a higher reduction of S. mutans count compared to Virgin coconut oil.</td>
</tr>
<tr>
<td>Patil et al. (2019)</td>
<td>Non-RCT</td>
<td>4-6</td>
<td>NaF (50)</td>
<td>Herbal (Himalaya Herbal dental cream) (50)</td>
<td>B, 2, 4, 12, 21</td>
<td>Culture</td>
<td>No significant difference in the bacterial count between both groups.</td>
</tr>
<tr>
<td>Bhati et al. (2015)</td>
<td>RCT</td>
<td>6-12</td>
<td>NaF (15)</td>
<td>Herbal (Aloe vera) (15)</td>
<td>B, 4</td>
<td>Culture</td>
<td>No statistically significant difference in the bacterial count among all groups.</td>
</tr>
<tr>
<td>Shetty et al. (2017)</td>
<td>Non-RCT</td>
<td>9-12</td>
<td>NaF (20)</td>
<td>Herbal (Manjistha) (20)</td>
<td>B, 4</td>
<td>Culture</td>
<td>Minimum difference showed better efficacy compared to NaF dentifrice but not statistically significant.</td>
</tr>
<tr>
<td>Pand et al. (2018)</td>
<td>RCT</td>
<td>5-10</td>
<td>NaF (20)</td>
<td>Herbal (Babool) (20)</td>
<td>B, 2</td>
<td>Culture</td>
<td>No significant difference between the two dentifrices.</td>
</tr>
<tr>
<td>Chandhira et al. (2020)</td>
<td>Non-RCT</td>
<td>3-6</td>
<td>NaF (10)</td>
<td>Herbal (Coconut OS) (10), Herbal (Aloe Dent) (10)</td>
<td></td>
<td>Culture</td>
<td>No statistically significant difference between the herbal dentifrices and conventional dentifrices.</td>
</tr>
<tr>
<td>Ushu et al. (2021)</td>
<td>RCT</td>
<td>14-15</td>
<td>NaF (20)</td>
<td>Herbal (Tulsi) (20)</td>
<td>B, 1</td>
<td>Culture</td>
<td>No statistically significant difference in the S. mutans count for a period of 7 days when compared to fluoride dentifrice.</td>
</tr>
</tbody>
</table>

Risk of bias: Risk of bias within each study is mentioned in the form of a figure and the studies are categorized into high (red), some concerns (yellow) and low (green) risk bias according to Risk-of-Bias Visualization (ROBVIS) tool. Most trials were at low risk of bias in the five domains i.e., random sequence generation and allocation concealment, performance bias for blinding of participants and personnel, detection bias for blinding of outcome assessment, attrition bias for incomplete outcome data and reporting bias for selective reporting that we assessed. Summary of the risk of bias for individual study as well as the judgments of the risk of bias for each domain is mentioned (Figures 2 and 3).
Results
Total articles yielded after the search were 127,323. After screening through titles 126,959 articles were excluded because they were not related to the objectives of the systematic review. Remaining articles were screened for duplicates through Endnote Software Version X7 and 278 articles were found to be duplicates; 86 articles which remained after screening abstracts were sought for retrieval, out of which 22 articles were not retrieved. Thus, they were excluded. Finally, 64 articles were screened for full text. Out of these 64 studies, 21 were excluded the reasons being: 8 articles had other types of study design, three articles were in language other than English, four studies did not have applicable comparison groups and six articles had their study population above 15 years of age. At the end, 42 studies were selected which were then qualitatively analysed after which they were included in the systematic review.

Meta-analysis
For quantitative measures, 42 articles were reviewed and 14 of them were selected for meta-analysis. These articles were statistically evaluated using Statistics and Data software (STATA). Forest graph was plotted while comparing the herbal and commercially available mouth rinses.

Meta-analysis was carried out using studies conducted by Babu NSV, et al13 (Study 1), Mehta S, et al14 (Study 2), Jauhari D, et al15 (Study 3), Mon J, et al16 (Study 4), Ali AM, et al17 (Study 5), Havale R, et al18 (Study 6), Kamath S, et al19 (Study 7), Mukherjee A, et al10 (Study 8), Bhor K, et al20 (Study 9), Sruthi KS, et al21 (Study 10), Elkarkhy Y, et al22 (Study 11), Sajadi FS, et al23 (Study 12), Havale R et al24 (Study 13) and Kamble A, et al24 (Study 14).

Forest plot showing pooled data was obtained which showed high heterogeneity among the studies suggesting that studies differed in their sample size. This heterogeneity can also be attributed to smaller number of studies included in the meta-analysis. However, the reason behind small selection was that studies were strictly chosen in accordance with the selection criteria laid down for the study. In our systematic review, we have chosen 14 studies for meta-analysis to evaluate and compare the effectiveness of herbal and commercially available oral formulations in the reduction of microbial count in children. Random effect model was used to plot the graphs. Both groups showed reduction in microbial count in children who used mouth rinse. In our study, the diamond is crossing the line of no effect and is lying on the right side of the line which suggests that the commercially available aids were found to be more effective in reduction of microbial count in children and the difference was statistically significant (p = 0.01) (Figure 4).
Another forest plot was plotted to show the pooled data obtained from meta-analysis of herbal and commercially available mouth rinse based on duration of follow-up. The studies which had short-term follow-up, that is less than or equal to two weeks, showed an equi-effective reduction of microbial count in children in both groups. However, studies which had long-term follow-up, that is more than two weeks, showed that commercially available oral formulations were more effective in reduction of microbial count in children which could be because of the substantivity of chlorhexidine, which allows it to bind to soft and hard tissues in the mouth, enabling it to act over a long period after use. However, the difference between the groups did not show any statistically significant difference (p = 0.10) (Figure 5).
Another 2 forest graphs were plotted while comparing the plaque index and gingival index to evaluate the effectiveness of herbal and commercial oral formulations. (Figures 6 and 7). Plaque index was taken for assessing the reduction of plaque accumulation whereas gingival index was taken to evaluate the efficacy of oral formulations in reduction of gingival inflammation.

The overall results are also depicted by the diamond which sits on the value of overall effect estimate and the width depicts the overall CI as the left and right ends of the diamond correspond to the lower and upper bounds of 95% CI. Here it was seen that the diamond is crossing the line of no effect and is lying on the right side of the line for the evaluation of microbial count and for plaque index it is merely crossing the line of no effect on the right side, whereas it is lying on the left side of the line for gingival index and it can be interpreted that the calculated difference between the intervention and control groups can be considered statistically significant for microbial reduction and statistically non-significant for gingival and plaque index. This implies that the control group which is the commercially available oral formulations are more effective in reduction of microbial count and equi-effective for plaque accumulation as compared to the experimental herbal group in children. On the other hand, herbal group is more effective in reduction of gingival inflammation among the mouth rinses in children.

Certainty of evidence: Table 2 presents a summary of the findings based on the GRADE approach. In the present review, the outcome of short-term and long-term follow-up assessed was attributed to low certainty and very low certainty of the evidence, respectively.
plaque removal which aid in preventing oral diseases be equi-effective to the commercially available non-herbal chlorhexidine and sodium fluoride. When long-term use of mouth rinse is necessary, it is limiting the use of chlorhexidine rinses to 6 months, but the US Food and Drug Administration recommended adverse effects associated with its prolonged use. Hence, increasing importance. In particular, controlling microbial count, gingival inflammation, and plaque accumulation is of primary concern. Natural antimicrobial mouth rinses have been shown to complement mechanical plaque removal which aid in preventing oral diseases. Given the recent trend towards using ‘herbal’ medicine, the World Health Organization (WHO) has also advised investigating the possible use of natural plants and herbal agents. Whereas, herbal oral formulations can be considered as a viable alternative as a commercially available non-herbal agents. Among the commercially available herbal agents Munident, Babool, Freshol, Hiora and Himalaya were found to be superior or equi-effective to the commercially available non-herbal agents.

Discussion

In modern dentistry, preventive measures that target the causative factors of oral diseases have become increasingly important. In particular, controlling microbial count, gingival inflammation, and plaque accumulation is of primary concern. Natural antimicrobial mouth rinses have been shown to complement mechanical plaque removal which aid in preventing oral diseases. Given the recent trend towards using ‘herbal’ medicine, the purpose of this study is to investigate the efficacy of herbal oral formulations compared to commercially available non-herbal oral formulations, such as chlorhexidine and sodium fluoride.

When long-term use of mouth rinse is necessary, it is important to consider chlorhexidine substitutes due to the adverse effects associated with its prolonged use. Hence, the US Food and Drug Administration recommended limiting the use of chlorhexidine rinses to 6 months, but the World Health Organization (WHO) has also advised investigating the possible use of natural plants and herb extracts.

The current review included 42 randomized control trials which were eligible for the outcomes intended to evaluate. It was observed that the sample size was low for the majority of studies. Low sample size can affect the outcome of the meta-analysis. Nonetheless, differences in the quality of the study designs, populations, percentage of dropouts, and reported loss to follow-up were revealed in further data analysis. We cannot solely conclude that the product investigated is beneficial in reducing plaque and gingivitis. Different formulations of test and control group have different active agents which may have different levels of efficacy and would have affected intervention effects.

In our study for better understanding, we have classified oral formulations into 3 broad categories as per the following:

<table>
<thead>
<tr>
<th>No. of studies</th>
<th>Study design</th>
<th>Risk of bias</th>
<th>Consistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Publicati on bias</th>
<th>Interventio n</th>
<th>Control (95% CI)</th>
<th>Absolute (95% CI)</th>
<th>Certainty</th>
<th>Importa nce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short term follow-up</td>
<td>10 RCT</td>
<td>Not serious</td>
<td>Serious</td>
<td>Not serious</td>
<td>Very serious</td>
<td>SMD 0.19 SD higher</td>
<td>287</td>
<td>272</td>
<td>Low</td>
<td>Critical</td>
<td></td>
</tr>
<tr>
<td>Long term follow-up</td>
<td>4 RCT</td>
<td>Serious</td>
<td>Serious</td>
<td>Not serious</td>
<td>Very serious</td>
<td>SMD 1.25 SD higher</td>
<td>109</td>
<td>111</td>
<td>Very low</td>
<td>Critical</td>
<td></td>
</tr>
</tbody>
</table>

CI: confidence interval; SMD: standardized mean difference.

a See Figure 5, substantial statistical heterogeneity: I² = 59.58%, p < 0.001. Therefore, inconsistency was downgraded by one level.

b Presence of publication bias. Therefore, publication bias was downgraded by one level.

c Small-sample size and hence not enough power to attain reliable level of certainty. Therefore, imprecision was downgraded by one level.

d Presence of publication bias. Therefore, publication bias was downgraded by one level.

Allium sativum, Psidium guajava and Spilanthes acmella were found to be less effective compared to the commercially available non-herbal agents. Among the commercially available herbal agents Munident, Babool, Freshol, Hiora and Himalaya were found to be superior or equi-effective to the commercially available non-herbal agents.

One suggested mechanism of action for the active ingredients in herbal agents is the ability to penetrate the biofilm and prevent plaque accumulation. This action has the potential to hinder the colonization of oral bacteria on tooth surfaces, which may contribute to better oral health. Herbal agents contain natural compounds with potential antibacterial and anti-inflammatory properties that may help prevent plaque accumulation and inhibit the growth of oral bacteria. Some of the commonly used herbal agents include tea tree oil, neem extract, and aloe vera. Tea tree oil, neem extract, and aloe vera are herbal ingredients with antimicrobial and anti-inflammatory properties that can improve oral health and reduce the risk of dental problems. They have demonstrated efficacy in reducing the number of bacteria in the mouth, preventing plaque buildup, and reducing inflammation. However, further research is necessary to fully understand the effectiveness and mechanisms of action of these natural remedies.

Since the results of the study indicate significant antimicrobial properties of herbal and commercially available non-herbal oral formulations, herbal oral formulations can be considered as a viable alternative as a daily rinse when desired. Additionally, herbal mouth rinses are suitable for children and individuals with special needs who run the risk of accidentally ingesting chemically formulated mouth rinse solution or fluoridated dentifrice. It is also an affordable choice for patients of low socio-economic status. Collectively, herbal mouth rinse is an option that can improve the oral health-related quality of life of individuals of different ages, socioeconomic background, and medical conditions.

The study had some limitations. During the literature search of our systematic review, we encountered a few lacunae. The heterogeneity observed between studies might have resulted from different methodologies followed, study designs and small sample sizes in the individual studies. Heterogeneity was overcome by the
Acknowledgements

We gratefully acknowledge the contributions of Dr. Vidyavathi Patil for her insightful comments and suggestions to this research.

References

12. Prospero website: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022318648

Evaluation of the effectiveness of herbal and non-herbal oral... Sri Lanka Journal of Child Health, 2024; 53(2): 156-165

https://doi.org/10.5005/jp-journals-10005-1295
PMid: 26379378 PMCid: PMC4562043

https://doi.org/10.5005/jp-journals-10005-1693
PMid: 32440066 PMCid: PMC7229395

https://doi.org/10.4103/tdj.tdj_41_18

19. Kamath S, Hegde R, Kamath N. Comparison of the Streptococcus mutans colony count changes in plaque following chlorhexidine (0.12%) mouth rinse and green tea extract (0.5%) mouth rinse in 8–12-year-old children. Journal of Indian Society of Pedodontics and Preventive Dentistry 2021; 39: 310-5.

https://doi.org/10.4103/jisp.jisp_338_20
PMid: 34898918 PMCid: PMC8603804

https://doi.org/10.4103/jiaphd.jiaphd_225_20

https://doi.org/10.14260/jemds/2021/66

https://doi.org/10.5005/jp-journals-10005-2399
PMid: 35991786 PMCid: PMC9357537

https://doi.org/10.5005/jp-journals-10005-2149
PMid: 35645512 PMCid: PMC9108858

https://doi.org/10.1155/2020/2829854
PMid: 32419797 PMCid: PMC7201456

26. WHO Monographs on Selected Medicinal Plants. Vol. 2; WHO Library Cataloguing in Publication Data;2018

https://doi.org/10.1186/s12906-020-28121
PMid: 32046707 PMCid: PMC7076867

165